The search to reveal a mystery

  Research laboratories around the world sought the location of human memory. The research had followed diverse leads. One clue related to the branched inputs of nerve cells, called dendrites. Branch China Thin-Wall Plastic Manufacturers rowth was assisted by a protein called cypin. Some memory disabilities were related to deficits in cypin. So, one possibility was that nerve cells grew new branches to store memory. New branches could represent added memory. But, human memory was immense. People were reported to be able to recognize, with 99.5% accuracy, any one of 2,500 images shown to them at one second intervals. Each of those images contained millions of pixels of specific information. When the size and scale of human memory was considered, the idea of branches, however microscopic, growing to add memories sounded perilously cancerous.

  Highly developed skill

  It was combinatorial coding, which enabled nerve cells of reptilian nosebrains to recognize smells and make crucial life decisions since the beginnings of history. Such sensory power had been developed in animals to a remarkable degree. Research showed that dogs could register the parameters of a smell and then pick it out from millions of competing smells. The animals could detect a human scent on a glass slide that had been lightly fingerprinted and left outdoors for as much as two weeks. They could quickly sniff a few footprints of a person and determine accurately which way the person was walking. The animal's nose could detect the relative odor strength difference between footprints only a few feet apart, to determine the direction of a trail. Recording and recognizing ABD and DEF enabled animals to record and recall a single smell to differentiate it from millions of other smells. Inherited memories of millions of smells decided whether food was edible, or inedible, or whether a spoor was life threatening. The system had both newly recorded and inherited memories, which enabled them to recognize smells in the environment.

  Inherited and acquired memories

  While such remarkable odor recognition skills were known for ages, it was only in the late nineties that science discovered combinatorial coding. A Nobel Prize was awarded for the discovery of the use combinatorial coding by the olfactory system in 2004. The olfactory system used the coding to enable a relatively small number of olfactory receptors to recognize different odors. Science discovered that particular combinations could fire to trigger recognition. In the experiment scientists reported that even slight changes in chemical structure activated different combinations of receptors. Thus, octanol smelled like oranges, but the similar compound octanoic acid smelled like sweat. We remembered the smell of oranges. Even the smell of sweat. Which meant that the system remembered those combinations. But science failed to recognize the true significance of combinatorial coding when they searched for the location of human memory. Millions of combinations were possible for the nerve cell with inputs from A to Z. But nerve cells had thousands of inputs. If nerve cells remembered combinations, then that could be the location of a galactic nervous system memory.


مشخصات

تبلیغات

محل تبلیغات شما
محل تبلیغات شما محل تبلیغات شما

آخرین وبلاگ ها

برترین جستجو ها

آخرین جستجو ها

کالباس بر محک طراحی سایت | طراحی وب سایت | طراحی سایت تهران رژيما | مجله رژيم درماني و لاغري نسیم افزایش سواد رسانه ای لعنت به این سئو وب نامه شفیعی مطهر Jackie برقکارساختمان وصنعتی